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Potential flow about two counter-rotating vortices 
approaching a free surface 
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(Received 24 February 1987 and in revised form 6 September 1988) 

The problem of calculating nonlinear two-dimensional free-surface potential flow 
about a pair of counter-rotating point vortices rising under their own influence 
towards a free surface is solved numerically. The two vortices are inserted into fluid 
which is initially a t  rest. A boundarylintegral-equation method is used to obtain 
free-surface elevations and streamlines about the rising pair of vortices for several 
vortex strengths. The paths of the two vortices are compared with those of a counter- 
rotating vortex pair under a rigid wall. 

1. Introduction 
In recent years there has been increased interest in the interaction of underwater 

vortices with a free surface. Such an interaction occurs behind a hydrofoil moving 
under a free surface or behind a ship whose counter-rotating propellers produce the 
vortex flow. Numerical work on the two-dimensional interaction of a free surface 
with point vortices has been performed by Salvesen & von Kerczek (1976), but they 
considered the flow resulting from a single vortex held fixed in a uniform stream. 
Such a model is more appropriate for the bound vortex of a moving body than for 
the free vortices of interest here. Other interest is exemplified in the papers of Barker 
& Crow (1977), Saffman (1979) and Peace & Riley (1983), which all discuss a rebound 
phenomenon possessed by the vortices and determine that it is a viscous effect. 
Novikov (1981) has done a linear analysis of the generation of surface waves by 
discrete vortices in air and water. He assumed that the fluid flow is potential except 
a t  the locations of discrete vortices. Sarpkaya & Henderson (1984) reported on 
experimental and theoretical investigations of the underwater vortices trailing 
behind a hydrofoil and concluded from experiments that, after two counter-rotating 
underwater vortices are produced, two kinds of disturbances appear on the free 
surface as the vortices rise towards the water surface. One set of disturbances, which 
they call striations, is essentially a set of three-dimensional disturbances on the free 
surface that are perpendicular to the direction of motion of the foil and appear when 
the two vortices are a t  a distance from the free surface approximately equal to the 
initial separation between the vortices. The other disturbances, called scars, appear 
on the free surface at a time when the two counter-rotating vortices are within half 
of the initial separation distance from the surface. Scars are free-surface depressions 
that are more or less parallel to the direction of motion of the foil. They are 
essentially two-dimensional and move outward with the vortices created by the 
movement of the foil. In  the theoretical part of their investigation of the interaction 
of the vortex pair behind a moving foil with a free surface, Sarpkaya & Henderson 
replaced the free surface by a rigid wall and assumed the flow to be two-dimensional. 
The vortices are treated as point vortices in two-dimensional potential flow in typical 
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d 

z1 = x, + iy, z2 = x2 + iy, 

FIQURE 1. Definition sketch. 

strip-theory fashion, Sarpkaya & Henderson applied the solution of Lamb (1932) to 
this problem of a counter-rotating vortex pair near a rigid wall. 

This paper presents numerical solutions to the fully nonlinear problem of the 
interaction of a pair of counter-rotating vortices with a free surface. Two discrete 
point vortices are inserted into a fluid which is initially at rest. Except for these 
vortices, the motion of the fluid is assumed to be irrotational. The two counter- 
rotating point vortices are allowed to approach the free surface under their own 
influence and, in so doing, interact with the free surface. This model, of course, does 
not incorporate important three-dimensional phenomena such as Crow instability or 
other phenomena such as the flow within a finite vortex core and the decay of 
vorticity (Sarpkaya & Henderson). A boundarylintegral-equation method is used to 
obtain free-surface elevations and streamlines about the rising pair of vortices for 
several vortex strengths. The paths of the two vortices are compared with those of 
a pair of counter-rotating vortices under a rigid wall. 

2. Mathematical formulation 
The problem considered is the calculation of two-dimensional potential flow about 

a pair of counter-rotating point vortices moving under their own influence towards 
a free surface. Each of the two point vortices has a fixed circulation. The vortex on 
the left has a counterclockwise circulation associated with it, and the vortex on the 
right has the opposite circulation. The two vortices are inserted into a fluid which is 
incompressible and inviscid, and which is initially a t  rest in a time-dependent region 
Q ( t )  of infinite depth and lateral extent. Except for the two point vortices, the fluid 
motion is assumed to be irrotational. Surface tension is neglected. The line segment 
connecting the two vortices is initially parallel to the original undisturbed free 
surface and, because of symmetry, remains so. This symmetry is used to reduce many 
of the numerical calculations to only half of the fluid region. The computations in the 
other half are obtained from enforcing symmetry. A Cartesian (r ,  y) coordinate 
system is fixed so that the y-axis points vertically upward, the x-axis lies in the 
undisturbed free surface and the origin lies directly above the midpoint of the line 
segment connecting the two vortices (figure 1) .  



Potential $ow about two counter-rotating vortices 26 1 

All variables have been non-dimensionalized. Lengths have been scaled by the 
initial distance L between the two vortices; velocities by T / L ,  where r is the 
magnitude of the circulation of the vortices; and time by L2/I‘. The location of the 
free-surface boundary 30, is unknown and must be computed as part of the solution. 
The locations of the discrete vortices are given by z1 = x, + iy, and z2 = - x1 + iy, in 
which x, < 0. The vortex a t  z1 has positive circulation while the vortex a t  z2 has the 
opposite circulation. The assumptions guarantee the existence of a velocity potential 
# everywhere in the fluid region except a t  the two discrete vortices. This potential 
satisfies an initial/boundary-value problem given by the following equations : 

#zz + #yy = 0 in Q(t) - {%> z,> ; (1) 

Dx 
- - # %  on 
Dt 

$ , = O  for x = f c o , ( z , y )  in Q ( t ) ;  ( 7 )  

$ q = O  for - c o < x < c o ,  y = - m ;  (8) 

#( t  = 0) = 0 for (x,y) on aQ2,(t = 0) ;  (9) 

y( t  = 0) = 0 on aQ,(t = 0). (10) 

The subscripts x and y denote partial differentiation with respect to these variables, 
and the derivative D/Dt denotes a material derivative. The Froude number is 
F‘ = T/(gL3)i. Equations (1)-(4) are well known and have been used by Longuet- 
Higgins & Cokelet (1976) and others. Equations ( 5 )  and (6) stem from a theorem due 
to Helmholtz, which states that  vortex lines move with the velocity of fluid particles 
(Lamb 1932). The terms involving the inverse tangent function represent the 
potential of a point vortex. Equation (9) is consistent with equation (13.54) of 
Wehausen & Laitone (1960) when t is allowed to approach zero. 

3. Method of solution 
The ini tial/boundary-value problem is solved by the generalized vortex method of 

Baker, Meiron & Orszag (1981, 1982). In this method, the velocity potential is 
represented as the sum of the velocity potential due to the two discrete vortices and 
the velocity potential due to a distribution of vortices on the free surface. The free 
surface zF and the vortex distribution y on it are parametrized in terms of the time 
t and a parameter e as z,(e, t )  = xF(e, t )  + iy,(e, t )  and y(e ,  t ) ,  in which - co < e < 03 
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and t >, 0. Thus the complex velocity potential w(z)  = r$ + ilc. a t  = x+ iy in the fluid 
region Q(t) is written as 

1 1 
2a1 27c1 y(e’)  log ( z  - z,(e’)) de’ + - log ( z  - zl) - - log ( z  - z 2 ) .  (1 1 )  

The velocity of a free-surface vortex at ZF(e,t) ,  for fixed e, is defined by the 
equation 

in which q(e) is the principal-value velocity defined on the free surface and a is a 
constant to be discussed later. Free-surface vortices are a t  fixed values of e and can 
slide along the free surface. The asterisk denotes complex conjugation, and the 
subscript e denotes partial differentiation with respect to e. The velocities of the 
discrete vortices a t  x1 and z2 are given by (5) and (6), which can be expressed in 
complex-variable notation as 

Application of the dynamic free-surface boundary condition (4) to ( 1  1 )  leads to the 
evolution equation for y :  

The functions qe and aq*/at are obtained by differentiation of q(e). It is expected that 
(7) will be satisfied if 

lim y(e) = 0. (15) 
e++m 

The initial/boundary-value problem defined by (1)-( 10) is solved if the functions zF 
and y along the free surface and the functions z1 and z2 are obtained as functions 
of time. These functions satisfy a system of differential evolution equations, 
parametrized by e, consisting of (12) for the free surface, (13) for the positions of the 
discrete vortices and (14) for the circulation density along the free surface. Equation 
(14) is a Fredholm integral equation of the second kind for ay/at. The corresponding 
initial conditions are 

z d e )  = 0, (16) 

y(e) = 0, (17)  

and id for Ic = 1,2,  Zk = ~- 2 

in which d is the initial depth of the vortex pair. 
Since the free surface is infinitely long, it is necessary to introduce wave damping 

to reduce to a finite length the part for which computation is required. Numerical 
damping has been discussed by Baker et al. (1981) and Israeli & Orszag (1981). To 
introduce this damping, the free-surface vortex density and height are set to zero 
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outside the region 1x1 < xR, and in the region 1x1 < xR the free-surface position and the 
vortex density along the free surface obey the modified evolution equations 

and 

R,--if, is the right-hand side of (121, and R, is the right-hand side of (14). Here 
D ,  is zero if 1x1 c xD and Q is non-zero if xD < 1x1 < xR. Thus there is a region 
1x1 < x,, in which (19)-(21) reduce to the undamped (12) and (14), a region 
xD < 1x1 < xR where waves entering from 1x1 < xD are damped, and a region 1x1 > xE 
where the water remains undisturbed. Although 4 has a finite jump along the free 
surface, the added terms in (20) and (21) are in fact continuous along the free surface. 
Computations can then be restricted to 1x1 < xR. 

The functions zF(e, t )  and y(e ,  t )  are discretized spatially by defining the functions 

and 

where t 2 0 and j = 1,2,  . . . , N .  The initial definition of these discretized functions is 
given by 

(24) 

and Yj (0 )  = 0. (25) 

( ' F ) j ( O )  (xF)j(0) -t i(yF)j(0) 

The parametrization e is chosen in such a way that el =j. The number N of free- 
surface points used and the distribution of the points on the free surface varies with 
the particular problem being solved. 

For each j ,  the functions ( zF) i ( t )  and y,(t) obey ordinary differential equations 
obtained from (19)-(21) by discretizing the right-hand sides spatially. The integrals 
are replaced by sums based on trapezoidal quadrature, and spatial derivatives with 
respect to  e are computed using fourth-order finite-difference formulas. Typical of 
this discretization is the replacement of the principal-value integral 

by the sum 

in which e and e' are associated with the indices j and k respectively. The ordinary 
differential equations for y j ( t )  are Fredholm integral equations of the second kind for 
ayj/at with eigenvalues that guarantee the convergence of an iterative solution 
technique for the derivatives (Baker et al. 1982). The result of the discretization 
process is a coupled nonlinear system of ordinary differential equations for ( z F ) j ( t )  

and yf(t). There are 3N+2  equations in this system of equations. 
The method chosen to solve the system of differential equations numerically is an 

implicit fourth-order Adams-Bashforth-Moulton predictor-corrector scheme. The 
first few time steps are treated with an explicit fourth-order Runge-Kutta technique. 
Numerical instabilities arise on the computed free surface if a filtering scheme is 
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not used. The numerical filtering scheme, which involves filtering the (2, y)-para 
metrization of the free surface and the vortex strength along the free surface, is 
employed sparingly at the beginning of the calculation and more frequently later in 
the calculations when the need arises. Filtering was discussed by Shapiro (1975) and 
has been used by Longuet-Higgins & Cokelet (1976) and Haussling & Coleman (1979) 
to eliminate numerical instabilities. Energy conservation can be monitored to assure 
that the filtering is not removing energy from the flow. 

4. Results 
Three cases corresponding to l / F :  = 0.02, 0.2 and 4.0 are considered and will be 

referred to as cases (a), ( b )  and (c), respectively. These three cases fall outside the 
range of Froude numbers (corresponding to l/FF between 33 and 333) for which 
Sarpkaya & Henderson (1984) did their experimental and theoretical work. The 
circulation of the discrete vortices is greater in the three cases presented here. In each 
case the vortex paths are plotted with the paths the vortices would have followed 
had the free surface been replaced with a rigid wall. The free surface and streamlines 
near the vortices are provided for selected times. In  addition, the potential energy 
( V ) ,  the negative of the finite part of the kinetic energy ( -  T )  and the negative of the 
finite part of the total energy ( -  W )  have been plotted as functions of time. These 
quantities are defined by (A l ) ,  (A 3) and (A 4) of the Appendix, where the invariance 
of W is discussed. Hereafter, the negative of the finite part of the kinetic energy will 
be referred to as the kinetic energy, and the negative of the finite part of the total 
energy will be referred to as the energy of the fluid. In  each case the initial depth of 
the vortex pair is 5, i.e. five times the initial distance between the vortices. This 
depth was chosen to be large enough to prevent significant initial transients on the 
free surface. 

The free surface has been discretized in two ways in accordance with (22)-(25). 
Both discretizations are similar in that the resulting free-surface grid is uniform for 
1x1 < 5 and an expanding grid, which increases by 1 % from interval to interval, is 
created for 1x1 > 5. For cases (a )  and ( b ) ,  the number N of free-surface points is 641 
and the uniform mesh spacing in 1x1 < 5 is 0.0625. Thus the initial free-surface grid 
is given by 

-79h-100h(1.01242-3-l) for 1 < j  < 240 

[ 79h + lOOh( 1 .01j-400 - 1) for 402 Q j Q 641, 

(z&t = 0) = [j -&N+ l)] h for 241 < j  Q 401 (26) 

in which h is 0.0625. The mesh extends from about - 67 to about 67 ; in other words, 
xR = x641 x 67. The wave damping region a t  either extremity includes about 40 
points of the grid and has a length of 20; that  is, xD = ~ ~ ~ ~ - 2 0 .  The resulting 
damping regions are for 1x1 between 47 and 67. Concerns about the accuracy of the 
computations for case (c) led to  the use of a uniform grid in 1x1 < 5 with twice as many 
points. This grid extends from about x = -376 to 376, and the wave damping region 
at  either extremity of the computational region is 70 units in length. This second 
free-surface discretization is given by 

- 159h- 100h(1.01482-~- 1)  for 1 < j  Q 480 

for 481 < j  < 801 127) 

159h+100h(1.01~-800-1) for 802 < j  Q 1281, 
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in which h is 0.03125. The wave damping regions are so far from the origin that 
significant waves will not reach them during the time for which computations are 
performed. Thus a precise definition of 4 is not necessary. The wave damping 
parameter Q in (20) and (21) was set to 2 divided by the length of the damping region 
in each case. This value proved successful in previous computations. 

The definition of a in (12) and (14) affects the spacing between the free-surface 
vortices in the discretized problem, and thus a judicious value is one for which 
numerical error is minimal. In particular, a should be defined so that the spacing 
between consecutive vortices remains fine enough to resolve free-surface features and 
so that the spacing does not develop large gradients a t  some points. When a is 1, the 
velocity with which a surface grid point moves is the velocity of the fluid particle a t  
that grid point. For any other value of a, the velocity is the fluid velocity plus a 
velocity tangential to the free surface. The kinematic and dynamic free-surface 
boundary conditions are satisfied, but this velocity of a grid point does not 
correspond to any physical fluid velocity. 

A t  first computations were performed with a equal to 0. In the central region 
between the two vertical lines passing through the discrete vortices, the free-surface 
grid points moved outward and tended to congregate near the vertical lines. 
Eventually the spacing in the central region became very coarse, and the free-surface 
spacing near the edges of the central region came to have a large gradient. Such 
conditions lead to large numerical errors. The same computations were then carried 
out with a set to 1. In this case the free-surface markers moved with the velocity of 
fluid particles and moved out of the central region a t  an even faster rate. One should 
expect such behaviour since the circulation of the two discrete vortices will carry 
fluid near the central part of the free surface away from the centre and parallel to the 
free surface. Without a mechanism for introducing new free-surface vortices near the 
centre, the spacing in the central portion of the free surface became coarse. 
Numerical experiments were also performed for a equal to - 1.  Of the three values 
of a considered, the latter choice produced the most desirable free-surface spacing 
with respect to resolution and uniformity. This value of a a t  least partially 
counteracts the tendency of the circulation to sweep free-surface vortices out of the 
central region. Since a appears linearly in (12), it seems reasonable to assume that 
a = - 1 is the optimal value of a for (a1 < 1. Thus all the results in this paper have 
been computed with a set to - 1. 

The Fredholm integral equations of the second kind for ay/at, given by (14) and 
(21), are solved iteratively using the Neumann series. The iterative technique is 
considered converged when the absolute value of the difference in two successive 
iterates is less than times the absolute value of the latest iterate. Thus, 
when the iterates are small, the error criterion is essentially an absolute error 
criterion, and, when the iterates are large, the error criterion behaves like a relative 
error criterion. 

Case (a)  (1/P: = 0.02). Results from the numerical calculation of the solution in 
this case of strongest circulation are depicted in figures 2-5. The time-step size used 
to obtain these results was initially set to 0.04 based on numerical experimentation. 
It was kept a t  this value until t = 32.0 when i t  was reduced to 0.01 for the remainder 
of the calculation. The time step was decreased because, as the vortex pair 
approached the free surface with the larger time step, the iterative scheme for 
obtaining the rate of change of vortex strength along the free surface began to 
require more than ten iterations before convergence was attained. Until t = 25.6, the 
number of iterations had been four per time step. After that, the number per time 

plus 
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FIGURE 2. Streamlines @ = 0, k0.02, k0.04,. . . , k0.24, vortex paths, wall paths, and the free 
surface for 1/F,2 = 0.02 at t = 32.0. 

X 

step increased gradually to eleven. The rate at which the scheme converges to a 
solution is relat,ed to the eigenvalues of the Fredholm integral equation of the second 
kind for the rate of change of the vortex strength. These eigenvalues approach one 
as the vortex pair approaches the free surface and, as they approach one, the rate of 
convergence decreases (Baker et al. 1982). The time step was decreased so that the 
time derivative of the free-surface vortex strength for each time step could be 
obtained from that of the previous time step with fewer iterations. Even so, 
quartering the time-step size reduced the number of iterations by only two from 
eleven to nine. The number of required iterations began increasing again and, a t  
t = 34.0, the number was twelve. 

The linear filtering scheme was necessary but i t  was applied sparingly every four 
units of time until t = 8.0 and every eight units of time thereafter. The free surface, 
streamlines, the position of the vortex pair and the vortex paths are depicted in 
figures 2 4  for three times near the end of the calculation. The paths the vortex pair 
would follow if the free surface were replaced with a rigid wall are also depicted. In  
these figures, it is apparent that  the circulation of each vortex is so strong that the 
pair moves up and away from the wall paths. I n  so doing, the pair produces a large 
free-surface displacement. Free-surface breaking will clearly occur. Figure 5 shows 
how the computed energy, kinetic energy and potential energy vary as functions of 
time. Kinetic energy of the flow is converted to potential energy of the free surface. 
The decrease in kinetic energy is apparent in the vortex paths being ' inside ' the wall 
paths. The total energy - W is constant throughout the calculation until near the 
end. The successful energy conservation throughout most of the calculation verifies 
that the filtering is not removing energy from the flow. The eventual loss of energy 
conservation may result from the distribution of grid points on the free-surface hump 
becoming rather coarse near the end of the calculation. The calculation was stopped 
at  t = 34.0 because of the large number of iterations required to obtain solutions of 
the coupled integral equations, the poor free-surface resolution and the loss of energy 
conservation. 
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FIQURE 3. Streamlines $ = 0, f0.02, k0.04,. . . , f0.24, vortex paths, wall paths, and the free 
surface for l/FF = 0.02 at t = 33.0. 

X 

2 

1 

0 

Y - 1  

-2  

- 3  

-4  

I I I I I I I 

- 4  - 3  -2 -1 0 
X 

Vortix path 

I I I 

1 2 3 4 

FIQURE 4. Streamlines $ = 0, k0.02, f0.04, . . . , f0.24, vortex paths, wall paths, and the free 
surface for 1/F: = 0.02 at t = 34.0. 

Case ( b )  (l/F,2 = 0.2). For this case of intermediate circulation, the time step was 
initially chosen to  be 0.25 and was kept at this value until t = 20.0, after which it was 
reduced several times until it was set to its final value of 0.003 for t > 32.0. Filtering 
of the free surface was also done only sparingly in this case. In  particular, no filtering 
was used until t was greater than 20.0. For larger values oft  the frequency of filtering 
varied from once for every five time steps to once per time step. The free surface, 
streamlines under the free surface, the position of the vortex pair and vortex paths 
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FIQURE 5. Potential energy ( V ) ,  negative of ‘finite’ kinetic energy (-T), and negative of 
‘finite’ total energy ( -  W )  in the fluid versus time for l/F: = 0.02. 
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FIGURE 6. Streamlines @ = 0, kO.02, k0.04,. . . , k0.30, vortex paths, wall paths, and the free 
surface for 1/F,2 = 0.2 at t = 30.0. 

X 

are depicted in figures 6 1 0  for a sequence of five times near the end of the 
calculation. I n  this case the central hump in the free surface is much smaller than for 
1/FF = 0.02 while troughs form above the vortices and move out ahead of them. For 
t > 33 (figures 9 and 101, the curvature of the free surface in the troughs is so high 
that the computation could not be continued without a great loss in accuracy. Wave 
breaking is imminent and the limit of the validity of the irrotational flow model has 
been reached. The vortex paths are very close to the vortex paths for the rigid-wall 
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FIGURE 7. Streamlines $ == 0, k0.02, k0.04,. . . , k0.30, vortex paths, wall paths, and the free 
surface for 1/F: = 0.2 at t = 31.0. 
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FIGURE 8. Streamlines $ = 0, k0.02, k0.04,. . . , k0.30, vortex paths, wall paths, and the free 
surface for 1/FF = 0.2 at t = 32.0. 

X 

case. In  figure 10, which depicts the latest in the sequence of flow pictures, it appears 
that the paths of the vortices, after staying ‘inside’ the rigid-wall paths, are about 
to cross to the outside of these paths. The slight downward motion of the vortices is 
the result of the large free-surface slope near them and their tendency to move 
parallel to the boundary. The computed energy, kinetic energy and potential energy 
have been plotted in figure 11 as functions of time. As the calculation proceeds, the 
potential energy increases and is matched by a decrease in kinetic energy. Thus the 
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FIGURE 9. Streamlines @ = 0, 5-0.02, k0.04,. . . , k0.30, vortex paths, wall paths, and the free 
surface for 1/F,2 = 0.2 at t = 33.08. 
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FIGURE 10. Streamlines @ = -0.03: -0.04,. . . , -0.30, right vortex path, right-wall path. and 
the free surface for l/F: = 0.2 at t = 33.35. 

X 

computed energy - W is constant until the end of the calculation when t > 32. The 
decrease in kinetic energy is not inconsistent with the vortex paths crossing to the 
outside of the wall paths. The free-surface boundary is deformed so much that the 
simplified energy analysis for a straight boundary is no longer useful. 

Case (c )  (l/B’: = 4.0). Figures 12-14 depict the vortex paths, streamlines and the 
free surface for three times near the end of the calculation. The time step used 
to obtain these results was 0.04 for t < 20.0, 0.01 for 20.0 < t < 31.0, 0.005 for 
31.0 < t < 32.0 and 0.0025 for t > 32.0. Linear filtering was applied every two units 
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FIGURE 11. Potential energy ( V ) ,  negative of ‘finite ’ kinetic energy ( -  T), and negative of 
‘finite’ total energy (-W) in the fluid versus time for 1/F: = 0.2. 
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of time until t = 20.0, then with increasing frequency until t = 35.25, and finally 
every 0.0025 units of time for t > 35.25, i.e. every time step. In this case the 
computed vortex paths are barely distinguishable from the vortex paths for the 
rigid-wall case. The shape of the free surface is not changed much by the presence of 
the vortices either. 

If the reference frame is changed from a fixed one to one that moves with a point 
vortex, then the flow near the point vortex may be viewed as a nearly uniform steady 
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FIGURE 14. Streamlines = 0, k0.02, f0.04,. . . , f0.30, vortex paths, wall paths, and the free 
surface for l/F: = 4.0 at t = 49.75. 

stream flowing past it under the free surface. The fact that the flow near the discrete 
vortex is approaching a steady state in this reference frame is indicated in figure 15, 
where the free-surface elevations a t  four times, including the three previously 
plotted, are plotted with the vertical dimension enlarged by a factor of 56.25. The 
speed at which each vortex is moving horizontally is nearly equal to the speed with 
which it would move if the free surface were replaced with a rigid wall and its motion 
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FIGURE 15. The computed free surface at t = 37.75, 41.75, 45.75 and 49.75 for 1/F,9 = 4.0. The 
vertical scale is enlarged 56.25 times. 

were induced entirely by the image system of a single reflected point vortex in the 
free surface. 

For the vortex strength of this case, the corresponding linear solution of Novikov 
(1981) has a resonant steady-state wavetrain to one side of each of the discrete 
vortices. I ts  wavelength is xa  and its amplitude is 4~e-'/"/a, where a is defined as 
F4/(27r2). Thus the linear steady-state wavetrain resulting from each vortex has a 
wavelength of 0.04 and an amplitude of 5 x a vanishingly small number for 
practical purposes. In  fact, the non-dimensional linear steady-state wave height ~ ( x )  
predicted by Novikov for a pair of vortices with one vortex of circulation - 1 at 
x1 - 0 . 5  and the other of circulation 1 at - x1 -0.5i is given by 

Here H ( z )  is 1 if x is positive and - 1 if x is negative. Figure 16 shows a comparison 
of the computed nonlinear free surface a t  the time t = 49.75 with the free-surface 
elevation ~ ( x ) .  The prediction of linear theory is for a somewhat broader and 
shallower depression than the depression predicted by the nonlinear calculations. 
However, the positions of the troughs are almost identical. 

The plots of energy, kinetic energy and potential energy in figure 17 also indicate 
that the flow may be approaching a steady state since all three energy curves are 
approximately level for the latest computed times. The curve for - W stays constant 
a t  about 4.0 x until approximately t = 35 at which time it rises before it levels 
off again for t > 40. The rise in the curve indicates a loss of total energy in the fluid 
since the curve actually represents the negative of the finite part of the total energy 
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FIGURE 17.  Potential energy ( V ) ,  negative of ‘finite’ kinetic energy (-T), and negative of 
‘finite’ total energy ( -  W )  in the fluid versus time for 1/F: = 4.0. 

in the fluid. While the energy curve is rising, i.e. for t > 35, small waves, which were 
generated at the start (t = 0) and which travelled rapidly out from the origin, are 
being damped as they move into regions with ever larger mesh spacing. The loss of 
energy due to this damping accounts, at least partially, for the rise in the curve of 
- W of figure 17. 
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5. Conclusion 
The nonlinear free-surface potential-flow problem of a pair of counter-rotating 

point vortices approaching a free surface and interacting with it has been solved 
numerically for three ratios of circulation to initial separation. The solutions are thus 
new results that extend the solutions given by Lamb (1932) for a rigid wall. For large 
circulation it is found that the vortex pair rises rapidly, surpasses the height of the 
mean surface level and produces a large hump on the free surface after initially 
following the paths of the rigid-wall case. Free-surface breaking will occur. For an 
intermediate value of circulation, the vortices follow the rigid-wall paths more 
closely, but a t  the time the rigid-wall vortices turn to move outward instead of 
upward, the curvature of the free surface above the point vortices becomes so high 
that the calculation had to be terminated. Breaking again occurs. For weak 
circulation the vortices follow the paths of the rigid-wall case closely. The energy and 
the free-surface elevation suggest that the flow may approach a steady state for weak 
circulation. A steady state is, of course, theoretically impossible because energy must 
continually be converted from kinetic to potential to maintain the wavetrain that 
would develop. However, since the amplitude of the wavetrain is extremely small in 
the case of weak circulation, an essentially steady-state solution has been computed 
and that solution is very close to the rigid-wall solution. 

In  the light of these results, it seems unlikely that a significant wavetrain behind 
an isolated vortex moving parallel to the water surface can occur when that vortex 
starts out as one of a pair moving vertically towards the surface. Either the vortex 
will be too weak to generate such a wavetrain, or, if it  is stronger, the original pair 
will induce wave breaking and the vortices will not smoothly turn the corner to move 
apart parallel to the surface. 

For each of the cases, the finite part of the total energy in the fluid has been 
calculated and has been found to be nearly constant except near the end of the 
calculations when the spacing of the points on the free surface has become quite 
coarse. 

This work was supported by the Numerical Naval Hydrodynamics Program a t  the 
David Taylor Research Center. This program is sponsored jointly by the DTRC 
Independent Research Program and the Office of Naval Research. 

Appendix. Energy conservation 

zero, it may be calculated a t  any time from the free-surface integral 
If the potential energy V ,  non-dimensionalized by p r 2 ,  is initially defined to be 

The kinetic energy, on the other hand, is always infinite because of the singular 
nature of the vortices, and its treatment here is based on the treatment used by 
Batchelor (1967) to obtain an integral invariant for the motion of a group of point 
vortices in an unbounded fluid domain. The difference is that here the fluid is 
bounded by a free surface, rather than filling the entire two-dimensional plane. 
Consider the portion of the fluid domain bounded by the free surface, a circle of 
radius c about each point vortex, and a semicircle of large radius R about the origin. 
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FIQURE 18. Integration paths for equation (A 2). 

Denote this region by Q R , E ,  its free-surface boundary by aQF,R, the outer semi- 
circular arc by aQ,, the circular path about the first vortex by aQ,,, and the circular 
path about the second vortex by aQ,,,. According to Batchelor, the total kinetic 
energy of the fluid contained in the region QR,€ is given by the formula 

@U*dx+- @v.dx+- @V.dX, (A2) ‘I aR,,, ‘I - _ _  - 

where @ denotes the stream function and v denotes the fluid velocity. The paths of 
integration are traversed in the directions indicated in figure 18. The stream function 
is written as 

@(x, Y)  

for (z,y) not 
is defined to 

On the paths aQ,,,, for j = 1,2, the asymptotic behaviour, for s+O, of the stream 
function $ is given by 

where rI2 is the distance between the two discrete vortices. It is the log-s term that 
leads to infinite kinetic energy. On the path aQ,, the asymptotic behaviour, for R + 
co, of $ is not immediately apparent. However, one can consider the corresponding 
linearized free-surface potential-flow problem for a pair of point vortices brought 
into existence a t  t = 0. Even if the conditions for linearizing the problem are not 
satisfied on the free surface near the point vortices, the flow a t  a large distance from 
the two point vortices is approximated well by the linear solution during the finite 
interval of time for which calculations are performed. Using the solution of 
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FIGURE 19. Constant-kinetic-energy paths for a pair of vortices approaching a rigid wall, 
according to Lamb (1932). 

Wehausen & Laitone (1960) for a single vortex, one can write the solution of the 
linearized problem as 

w(z, t )  = $(x, Y) + i$jr(z, Y) 

1 1 1 1 
2xi 2x1 2x1 27tl 

- - -1% (2- --log ( z -  z2( t ) )  + ---7 log (2 - zl*(t)) --log (2  - zz*(t)) 

where all variables are non-dimensional. Since the inner integrals in the last two 
terms are O( 1/R) for R + cc , as has been shown for similar integrals by Lamb (1932), 
the stream function $(z,y) vanishes a t  least as fast as 1/R as R+cc. Thus the 
integral over the outer semicircle for the kinetic energy vanishes as R approaches 
infinity. Letting s+O and R --f 00 in (A 2), one obtains 

1 T = lim $v.dx+-logr,,. (A 3) 
w.0, R+m 27t 

The quantity T, which is obtained by removing the log-€ term from the kinetic 
energy, is called the finite part of the kinetic energy. It is conjectured that 

is invariant. W =  V+T (A 4) 

For the case of a rigid wall replacing the free surface, the function $o(x,y) 
represents the image system for the two vortices given by 

1 1 
4x $ o h  Y) = &log {(x--51)2 + (Y +Y1)2)----log ((5- z2), + (Y+Y/2)2). 
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In this case, the integral over aG?,,, in (A 2) vanishes since the boundary aQF,, is a 
flat surface on which $ vanishes. Moreover, it is easy to see that the integral over 
d52, vanishes as R --f co. Thus, 

T = lim 
e+O, R+CC 

It can be seen from (A 5 )  that T = constant is the equation for the paths of Lamb’s 
(1932) solution for the vortices approaching a wall (figure 19). Thus the conjecture 
that Bf T is invariant is verified at  least for this special case when B = 0. Moreover, 
T is a monotonically increasing function of the square of the initial separation 
between the vortices. Thus a deviation of the vortices from the paths of the wall 
solution represents an increase in kinetic energy if the new paths lie ‘outside’ the 
constant-T paths as indicated in figure 19. Otherwise the new paths represent a 
decrease in kinetic energy. 

With the free surface in place of the wall, some of the kinetic energy will be 
converted to potential energy. The reduction in kinetic energy would tend to lead to 
vortex paths that are ‘inside’ the wall paths. However, the deformation of the upper 
boundary will further distort the paths so that energy analysis alone is inadequate 
for predicting the paths in the free-surface case. 
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